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ABSTRACT

In the first part of this report we consider a dynamic
programming model in which all rewards obtained by the
decision maker arec assumed nonnegative. The decision
maker's objective is to successively choose actions so

as to maximize his expected reward earned over an
infinite time span. It follows from known rasults that
the decision maker's choice need only depend upon the
outcome of a randomization that depends on the model

only through the state of the model and the time when the
choice is made. We show by counterexample that this is
basically the smallest class of decision rules that need
be considered. Conditions under which a stationary policy
is optimal are also presented.

In the second part we consider the same model under a
new criteria, namely, the average cost incurred per unit
time. An example is presented in which there does not
exist an e-optimal randomized stationary policy.
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SOME REMARKS ON POSITIVE DYNAMIC PROGRAMMING

by

Sheldon M. Ross

1. INTRODUCTION

Consider a Markov decision process having a countable state syace 1 and

a finite action space A . If action a is chosen when in state i , then
(i) we receive a nonnegative bounded reward R(i,a)

and

(ii) the next state of the system is chosen according to the transition

probabilities {Pi (a),j € 1} .

3

A palicy is any measurable rule for choosing actions. Let Xt and a denote,
respectively, the state of the process and the action chosen at time t . For

any policy = , we define

(1) v (1) = E“LZO R(X ,a ) [ 1] .

A policy 1is said to be

(1) stattonary, if the action it chooses at any time is a deterministic
function of the state at that time.
(2) randomized stattonary, if its action at any time is a randomized

function of the state at that time.




(3) Markov or memoryless, if its action at time t 1is a deterministic

function of the state at time t and t .
(4) randomized Markov or randomized memecryless, 1f its action at time t

a randomized function of the state at time t oand t .

It follows from results presented by Derman and Strauch [3] that we need
never go outside the class of randomized memoryless policies. That is, for any

policy m , there exists a randomized memoryless policy n' such that

(2) V(1) 2V (1) vi.

They prove this by showing that the class of randomized memoryless policies is
large enough so that, for any policy n , there exists a randomized memoryless

policy n' such that

P“{Xt = j,at = a | Xo = {} = P",{Xt = 3,3, =a | Xo =1}

which, of course, implies that V"(i) = V“,(i) g
In Section 2 we show, by counterexample, that we cannot generally restrict
attention to either the class of randomized stationary policies or to the class

of memoryless policies. In Section 3 we prove some results concerning the

existence of a stationary policy that maximizes (1).

is




2. THE COUNTLREXAMPLES

The first counterexample shows that we cannot always restrict attention to

the memoryless policies.

Example 1:
Let the states be given by 0,1,1',2,2', ... . State 0 is an absorbing

state and once cntered can never be left, {.e.,

POO I L

In state n,n > 0 , there are 2 possible actions having respective transition

probabilities

Pn,n+1(1) L Pn,n'(z) =1, n>0.

In state n',n > 0 , there is a single available action, having transition

probabilities

The rewards depend only on the state and are given by

R(n) = 0 n>0

R(n') = 1 n>0.

Suppose the initial state is state 1 . It {s easy to see that under any memoryless
rule the total expected reward will be finite. However the randomized stationary
policy which, when in state n , selects action 1 with probability a and
action 2?2 witn probabilicy 1 - a has an infinite expected return when the a,

are chosen so that




n
" a1 +0 as n-+ =
i=]
and
© n
' a L o« .
o=l s

The second example shows that we cannot always restrict attention to the

rardomized stationary policies.

Example 2:
The states are given by 1,2,3, ..., ® . In state n there are 2 possible

actions having respective transition probabilities

Pn,n+1(1) -1 l<n«<=

Pn,l(z) =a = 1 - Pn _(2) l<n<o,

State = {s an absorbing state, i.e.,

P - 1 .

The rewards depend only on the state and are given by

R(1) =1

R(n) = 0 n=23 ..., =.

The values a are chosen to satisfy

(3) n:1 e > 0, a < 1 al1l n.




Suppose that the initial state is state 1 . It is easy to see that under any
randomized stationary policy the expected number of visits to state 1 1is a
geometric random variable with finite means, hence the total expected return is
finite. However, consider the policy which on its nth return to state 1 chooses
action 1 n times and then chooses action 2 , Since, by (3) this policy has a

positive probability of visiting state 1 infinitely often, it has an infinite

expected return,




3. CONDITIONS

Let

V(i) = sup V“(i) . 10 S
]

It has been shown by Blackwell [2] that V is the smallest nonnegative solution
of
(4) V(i) = max ‘R(i,a) + ) Pij(a)V(j): , 1) [eN1s

a h |

*
Let m be a stationary policy which, when in state 1 , selects an action

maximizing the right side of (4).

Proposition 1:

If V(i) <« , then V (1) = V(i) 1if and only if
T

E“*[V(Xn) | Xy =11 >0 as n -+ .

Proof:

Let Ht = {Xo,ao,xl,al, olakIn Xt,at} denote the history of the process up
to time t . Now

E 4

mT t

I~~3

| [V(Xt) - E (V) | ut_l)] =0.

ki

However,

En*[V(Xt) | H ) = } th_lj(at_l)v(j) +RX ;.8 ) - RX 1,8 ))
" V&, ) - RO je8y) -




Tiire

n
B L RO _hag) = B (VX)) - B L IV(X))
1 t=l n m

and the result follows by letting n » « |
Corollary 1:
Let W(i),i ¢ I , be any finite nonncgative solution of

(5) W) = max R(1,0) + P, @wH! iel

a l 3 J

*
and let n  be a stationary policy which, when in state i , selects an action

maximizing the right side of (5). If

E"*[W(Xn) | Xo =11 + 0 as n -

then

V(1) = V(i) = () .
n

Proof:

By the same reasoning as in Proposition 1, we obtain that

E &

n t

e~

: R(X, ;.8 _)) = E WG] - Eﬁ*[w(jxn)] :

The result now follows by letting n + « and recailing that V is the smallest

nonnegative solution of (5).
Corollary 2:

Suppose there erists a (stopped) state -- call it 0 -- whirh is such that




Poo(a) = ] all ae A

]
o

R(0,a) all aecA.

*
Let n be a stationary policy determined by the optimality Equation (4). Then

if
(1) V is bounded
(11) P ,[limX =0 | X =1] =1
™
then
vV ,.@) =vQ3) .
n
Proof:

The proof follows from Proposition 1 and the bounded convergence theorem

since V(0) = 0 .
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ON THE NONEXISTENCE OF e-OPTIMAL RANDOMIZED STAT LONARY
POLICIES IN AVERAGE COST MARKOV DECISION MODELS

by

Sheldon M. Ross

1. INTRODUCTION

Consider a Markov decision process [see Derman (1966) or Ross (1968)] having
a countable state space I and a finite action space A . If action a 1is chosen

when in state 1 , then

(1) a cost c{i,a]l 1is incurred, and
(ii) the next state is determined according to the transition probabilities

{Pij(a) s O &L,

A policy 1is any measurable rule for choosing actions, and is called stationary if
the (possibly randomized) action the policy chooses at any time depends only on

the state of the process at that time. In Maitra (1966), the question is asked of
whether or not there always exists an e-optimal stationary policy under the average
expected cost criterion. That is, is there a stationary policy whose average
expected cost is within ¢ of the infimum over all policies? We answer this in

the negative by the following counterexample.

2. THE COUNTEREXAMPLE

Let the states be given by 1,1',2,2' ..., n,n', ..., @ . In state n ,

l <n <, there are two actions, with transition probabilities given by

Pn,n+1(1) -1

P =a =1-7 ().

In state n' , there is a single action, having transition probabilities
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State = is an ~bsorbing state and once entered is never left, i.e.,

The costs depend only on the state and are given by

The values «
n

(i) a

n

(ii)

H =9 8

n

Suppose the initial state is state 1 .

c[n,al =2 all n=1,2, ..., @, all actions a

cfn',a] =0 all n>1, all a.

are chosen to satisfy

<1

a 3/4
n

If a stationary policy is employed then,

with probability 1 , a cost of 2 will be incurred in all but a finite number of

time periods.

enters state

This follows, since under a stationary policy, each time the process

1 there is a fixed positive probability that the process will never

again re-enter that state. Therefore, under a stationary policy, the average cost

will, with probability 1 , equal 2 . Hence, by the bounded convergence theorem,

the average expected cost will also equal 2 .

Now let

R be the nonstationary policy which initially chooses action 2 ,

and then on its nth return to state 1 , chooses action 1 n times and then

chooses action 2 . The average cost under this policy will equal




2 with probability 1 - I a
n=1

1 with probability I a -
n=1

This is true since I a represents the probability that, under R , the
n=1

process will never enter state « . Hence, by the bounded convergence theorem,

the average expected cost under R is 3/4 + 2/4 = 5/4 .

Hence, there is no e-optimal randomized stationary policy for ¢ < 3/4 .

12
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